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Fig. 1. Conventional directional coupler.
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Fig. 3. Transmission loss versus normalized frequency.

or

3 24 (s +1

= o @) Zo (5)

where k = 1/(2)12 has been used, and Z;,, is the input impedance
at port 1.
The input VSWR at port 1 can be calculated using (5) as

[ Zis + Zo | + | Zin — Zo |
| Zii +Zo| — | Zss — Zo |

= 1/sin%(6). (6)

VSWR =

The transmission loss from port 1 to port 3 can be calculated using

(5) as
lZinl — Z, I)2>1/2
T =20k (1 - <———
o8 | Zint + Zo |

2 sin (8) R

20 logio (1 frapre (6)) (in dB). )
Equations (6) and (7) are plotted and shown in Figs. 2 and 3,
respectively.

Note that Fig. 2 is slightly different from [1, fig. 2]. The differ-
ences are due to the different coupling coefficient and the approxi-
mate equivalent circuit used in [17.

The other particular case where both port 2 and port 4 are shorted
to ground can be analyzed in a similar manner provided that the
admittance matrix instead of impedance matrix be used. The input
VSWR and the transmission loss can be shown identical to (6)
and (7), respectively,
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We conclude that dc blocks in microwave frequency can be
realized by using A/4 — 3-dB directional couplers with both coupled
port and transmitted port open-circuited. The exact theoretical
responses of input VSWR and transmission loss have been derived.
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The Synthesis of Quarter-Wave Transformers, Low-Pass
and Half-Wave Filters in the Sine Plane

A. I. GRAYZEL

Abstract—This letter presents a method for synthesizing quarter-
wave Chebyshev transformers, low-pass and half-wave filters.
The method uses sine-plane synthesis which greatly simplifies
the numerical calculations and allows one to obtain good numerical
accuracy using just a desk calculator. Equations for the transmission
coefficient are given in a simplified form.

With the discovery of the S-plane equivalent circuit of the trans-
mission line and the development of S-plane synthesis techniques
[13, [2], it is possible to synthesize quarter-wavelength Chebyshev
transformers and low-pass filters with a high degree of accuracy using
a desk calculator. This letter presents the equations for the quarter-
wave transformer in its simplest form and demonstrates by examples
the synthesis procedure for both transformers and low-pass filters.

The equations for the quarter-wavelength transformer have been
derived by a number of authors [3]-[5]. The method presented
here follows [5] which is believed to be the simplest form. The de-
sired transmission coefficient is given by

1

SRR W
where T, is the nth order Chebyshev polynomial and
.= cosh § (22)
14
P = €os b. (2b)
Then
1
= m (2¢)
where
A = tanhé. (2d)

§ is a complex angle which on the j axis equals j0 and z then is equal
to cos 8/cos 8, where 8, and = — 6, are the cutoff angles of the trans-
former. The transformer circuit is shown in Fig. 1 and is normalized
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to 1 Q. The transmission coefficient of this circuit at zero frequency
is 4R/ (1 + R)%. Equating this to 7(0) of (1) yields

R—1)
2 = (B-1) . (2e)
4RT2(1/p)
The zeros of the denominator of (1) are given in [6] as:
. f2e—1 . .
Im (z,) = sm( o 1r) sinh g, 7= 1,2,++42n (3a)
2 — 1 .
Re (z,) = cos( 5 1r> cosh u, 7 =12--+2n (3b)
n
where
cosh p] 1 ([(1 . 1)1/2 N 1]1!n N [(1 n 1)1/2 + 1]-1/n> (30)
= - — - — - . c
sinh u 2 kz k k2 k
It can be seen from (3) that 2,43 = — 2, and using (1) the magni-
tude squared of the reflection coefficient can be written as
n
(ak 3 tak)?
k=0
lpl=1-T=— @

InI (2?2 - $1,2)

=1

where o is a constant and #; are the coefficients of the Chebyshev
polynomial, Substituting for 2> (2¢), one obtains the following after
some manipulation:

(I_I z2) JT 2 — a2

k3 =1
I=I (@ -2 = T 0 (58)
where
. 1
AME=1 ——p%z‘ (8b)
Equation (4) can then be written as
AT —ayepe itf‘_ 1 ‘I
= pF \ (1 — a2)12
[p)*= (62)
II v =)
=1
n tk 2
A2 =1 — Ay
¥~ P*
= (6b)

InI (Az - A12)

a=1

where (2a) has been used to eliminate x. It should be noted that
when 7 is even the Chebyshev polynomial is even and hence all the
tz for k odd are zero. Similarly when » is odd all the # for k even are
zero. It therefore follows that for all terms in the numerator of (6b)
whose coefficients are nonzero (n — k) /2 is an integer. The numera-
tor of (8b) is therefore a perfect square. p()\) is formed by taking
the square root of the numerator and the left half-plane (LHP)
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zeros of the denominator. Thus

ASE q—wmewr 4 Y e
=0 P 720
P(k) = = 3
IIToa-x IHoa-%
=1 =1
n
bt n even
2
m o=
-1
Z S~ nodd ()

The \; are given by (5b). We must select those zeros in the LHP.
It can be shown that the zeros in the LHP can be genersted from the
2; in the upper right half-plane by the relationship

- 1 1/2
A= —(l—p_z_i) , 1 =122
Ty

1
nt n odd

Xn——H—i = X1* l=

n/2 n even. 8)
Let us rewrite (7) as
A aNi
=0

pA) = ———. (9)

n
b

=0

We must now determine the coefficient A. We will normalize the
transformer to a load of 1 © as shown in Fig. 1. The reflection co-
efficient at zero frequency is then (R — 1)/(R + 1), which must

therefore be the value of p(0) given by (9). Equating we find that
bo(R ~ 1)

= 10

a(R+1) (10)

Finally the input impedance Z(A) of the transformer of Fig. 1 is
given by

n m
STbAi— A Y a

1l - P =0 =0

Z(\) =R =R
L+p n m
Db+ A Y ad
=0 =0

(11

As discussed in [27] 2 is the ratio of the even to odd parts of the
denominator of the input impedance given by (11). Having deter-
mined z:; we synthesize the network in the S plane as deseribed in
[2]. )

We will now solve the same example given in [4]. We will match a
resistance of 0.44 to a 1-Q load with p = 0.464. We find from (2e)
that &% = 1.5777 X 10~* and from (3) that coshu = 2.80233,
sinh p = 2.61783, z; = 2.42688 4 71.30891, and 2, = j2.61783. Sub-
stitution into (8) yields Ay = —0.86667 — j.29450 and A; =
~1.20520. Multiplying out the three factors (A — X)) (X — X,*)
(A — X2) we find that by = 1, by = 3.02863, b, = 3.08303, and b, =
1.08526. We must now evaluate the numerator polynomial of (7).
The coefficients of 7 are ; = —3 and & = 4, which yield for
p = 0.464, ao = 33.57559, and a; = 6.455. Evaluating (10) we find
A = —0.01257. The denominator polynomial of Z(\) (11) is then

N+ 29473622 + 3.08303x -+ 0.66321

and
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_ 2.94736 + 0.66321
B2 = TTNF ¥ 3.083031

To synthesize the network we will form 22"/ (S) = 212/C as described
in {27 and synthesize the network in the form shown in Fig. 2.

2.94736

S24+1
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DX+ Dy gz lese 4 Dy

then replacing A by 1/A one obtains thé denominator polynomial for
the low-pass filter Doz -+ DiAr~1e.« + D, One then forms ze. as the
even over the odd part of the polynomial, and synthesizes the net-

+ 0.66321

299 =

SZ
8 (82 +1

+ 3.08303)

3.61057.8* -+ 0.66321

= 1.083035° + 3.083038

1.130858

3.6105782 4 0.66321

4.083038% 4 0.749948

[ 4.083038* + 3.083038

1.547558

2.333098 [3.61057.8? + 0.66321

The resultant network is that of Fig. 3 with C, = 3.51788, L; =
1.54755, and C: = 1.13085. L, has not been determined but is not
necessary. We divide the elements as shown in Fig. 4 to be com-
patible with Fig. 2 and find that L; must equal 0.49747. The resulting
transmission-line network is then the network of Fig. 5.

The transmission coefficient of a low-pass or half-wave filter made
up of cascaded unit elements is also given by (1) where x = sinh §/jp
and p = sin 6,. 6 is a2 complex angle which on the j axis equals j6 and
x then equals sin §/sin 8,. 6, is the cutoff angle of the low-pass filter
and 26,/r is the percentage bandwidth of the half-wave filter. For
the same value of & and sin @, = cos 6, (6, = 72 — 6;) the trans-
mission coefficients are identical except for a translation of 90°.
Cristal has shown [7] that the input impedance of one can be de-
rived from the other under this condition by replacing X by 1/\. 1f
one has found the denominator polynomial of (11)

Z1S Z25 Z35
1 VE yY F f 1 E
“Zxn
Fig. 3.
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3.517888

0.66321 [ 2.33309S

3.610578?

work in the S plane exactly as was done in the previous example.
Hence if one wants to synthesize a three-section Chebyshev low-pass
filter with k% = 1.5777 X 10~ and sin 6. = 0.464 then one obtains
directly from the coefficients of the denominator polynomial of the
previous example that

 3.08308M + 1
T 0.663210° + 2.94736)
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Single Hybrid Tee Frequency Discriminator
J. NIGRIN, N. A. MANSOUR, anp W. A, G. VOSS

Abstract~—A novel single hybrid tee frequency discriminator is
investigated. It consists of ordinary microwave components and its
tuning is achieved by means of a movable short circuit. The discrim-
inator properties are comparable to those of an ordinary phase dis-
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